Note

Base-catalyzed formation of 1,6-anhydro- β -D-glucopyranose from phenyl α -D-glucopyranoside

YUAN-ZONG LAI AND DONALD E. ONTTO

Department of Forestry, School of Forestry and Wood Products, Michigan Technological University, Houghton. Michigan 49931 (U. S. A.)

(Received March 7th, 1978; accepted for publication, March 25th, 1978)

It is well established $^{1-3}$ that base-catalyzed cleavage of phenyl β -D-glucopyranoside (1) proceeds through the intermediate formation of a 1,2-anhydride, providing a facile method 4 for the preparation of 1,6-anhydro- β -D-glucopyranose (levoglucosan, 3) (see Scheme 1), but the mechanism for the corresponding α -D anomer (2) has not been clarified.

A nucleophilic, aromatic substitution⁵ has often been considered, on the basis that the aryl α -D-glucopyranosides do not produce levoglucosan under mildly alkaline conditions (1.3M KOH at 100°). It should be noted that phenyl α -D-glucopyranoside is essentially stable under these conditions; its behavior at elevated temperatures has not been investigated. On the other hand, a novel mechanism involving the initial migration of the nitrophenyl group (O-1 \rightarrow O-2 \rightarrow O-3) and the formation of Meisenheimer complexes as the reactive intermediates, has been reported for p-nitrophenyl α -D-glucopyranoside^{6,7}.

However, alkaline cleavage of closely related glycosides, phenyl α -D-galactopyranoside⁸ and a variety of unsubstituted and substituted phenyl 2-deoxy- α -D-glucopyranosides⁹, gives the corresponding 1,6-anhydride as the major product, indicating the direct involvement of the ionized 6-hydroxyl group. Such an intramolecular-displacement mechanism was further supported by the results of kinetic studies^{10.11} on methyl α -D-glucopyranoside, and is now confirmed with phenyl α -D-glucopyranoside (2; see Scheme 1) by the identification of the anticipated product, levoglucosan, as now discussed.

Samples of the D-glucoside 2 (0.04m), with D-glucitol (0.06m) as an internal standard, in 4.3m sodium hydroxide were sealed in 10-mL ampoules under a nitrogen atmosphere, and heated isothermally at 170° in an oil-bath for various periods of time. The solution was cooled, neutralized with Amberlite IR-120 (H⁺) resin, and concentrated under vacuum. Thin-layer chromatography of an aliquot of the mixture on silica gel IB-F (Baker-Flex) with 1:9 acetone-water revealed the presence of unreacted 2 and a component having a mobility identical with that of an authentic sample of 3.

$$H_2COH$$
 H_2COH
 H

Scheme 1 Possible mechanisms for the alkaline cleavage of phenyl eta- and lpha-p-glucopyranoside

For quantitative determination of the I,6-anhydride and unreacted glycoside, the reaction mixtures were per(trimethylsilyl)ated, and the products analyzed by gas-liquid chromatography using a stainless-steel column packed with 3% of SE-52 on Gas Chrom Q. The resulting data, given in Table I, indicate that, for the sample

TABLE I PRODUCTS OF BASE-CATALYZED CLEAVAGE OF PHENYL α -D-GLUCOPYRANOSIDE IN 4.3M SODIUM HYDROXIDE AT 170°

Starting material	Reaction time (min)	p-Glucoside remaining (%)	I,6-Anh3 dro-β-D-glucose		
			Analyzed (%) ^a		Calc. (%)
			Pyranose form	Furanose form	_
Phenyl					
α-D-glucopyranoside	20	78.0	8.6	1.0	13.9
	40	60.3	10.7	1.7	25.0
	60	35.7	16.1	1.6	40.5
1,6-Anhydro-					
β -D-glucopyranose	20		91.8		
	40		65.3	5.0	
	60		54.5	4.0	

[&]quot;Based on the original p-glucoside. "Theoretical yield based on the fraction of p-glucoside reacted.

502 NOTE

heated for 20 min, the total yield of levoglucosan and its furanose isomer is $\sim 70\%$ based on the degraded glycoside. The yield is decreased by increasing the reaction time, because these anhydrides are subject to further degradation under the prevalent reaction-conditions. Traces of D-glucose were also detected among the product mixtures; the free sugar is partially formed through the alkaline degradation of levoglucosan, as shown by parallel experiments on model compounds.

These data confirm that base-catalyzed cleavage of phenyl α -D-glucopyranoside, like that of phenyl α -D-galactopyranoside and phenyl 2-deoxy- α -D-glucopyranoside, is facilitated by the anchimeric assistance of the hydroxyl group on C-6; but it takes place at a rather high temperature. As the intramolecular-displacement process requires a coplanar arrangement of the atomic centers involved, the marked difference in the reactivity of these α -D-glycosides must be due to the relative stabilities of their ${}^{1}C_{4}(D)$ conformers.

However, the maximum yield of 3 and its furanose isomer, calculated on the assumption that, when formed, these anhydrides are stable, is no more than 75%, indicating the involvement of other mechanisms, such as a bimolecular, nucleophilic, aromatic substitution.

ACKNOWLEDGMENT

Financial support from the McIntire-Stennis funds (Project No. 20055) is gratefully appreciated.

REFERENCES

- 1 C. M. McCloskey and G. H. Coleman, J. Org. Chem., 10 (1945) 184-193.
- 2 C. E. Ballou, Adr. Carbohydr. Chem., 9 (1954) 59-95.
- 3 B. CAPON, Chem. Rev., (1968) 429-433.
- 4 G. H. COLEMAN, Methods Carbohydr. Chem., 2 (1963) 397-399.
- 5 A. N. Hall, S. Hollingshead, and H. N. Rydon, J. Chem. Soc., (1961) 4290-4294.
- 6 D. HORTON AND A. E. LUETZOW, Chem. Commun., (1971) 79-81.
- 7 C. S. Tsai and C. Reyes-Zamora, J. Org. Chem., 37 (1972) 2725-2729.
- 8 E. M. Montgomery, N. K. Richtmyer, and C. S. Hudson, J. Am. Chem. Soc., 65 (1943) 3-7.
- 9 R. J. FERRIER, W. G. OVEREND, AND A. E. RYAN, J. Chem. Soc., (1965) 3484-3486.
- 10 V. V. BEST AND J. W. GREEN, Tappi, 52 (1969) 1321-1325.
- 11 Y.-Z. Lai, Carbohydr. Res., 24 (1972) 57-65.